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Abstract

The variation of vertical heat flow with depth near a scarp juxtaposing two media 
of contrasting thermal conductivity is summarised in a series of plots. Heat flows 
are calculated numerically using a two-dimensional finite element model. Boundary 
conditions are: uniform, constant temperature at the Earth's surface; constant 
heat flux into the bottom of the model (at great depth); no horisontal heat flow 
across the sides of the model; temperature and the normal component of heat flow 
are continuous across the conductivity boundaries. For geologically extreme (but 
plausible) conductivity variations this refraction effect may cause heat flow to vary 
from 40% to 200% of the regional value. In general, the refraction effect is felt to 
within several scarp heights, both vertically and horisontally.

Introduction

When rocks of contrasting thermal conductivities are juxtaposed on steep contacts, 
heat flows preferentially through the rock with the higher conductivity. For example, 
if surface heat flow is measured on either side of a vertical fault separating granite 
from alluvium, the measured value will be higher over the more conductive granite. 
The maximum effect will occur at the contact itself, where the heat flow will vary 
discontinuously by an amount equal to the ratio of the thermal conductivities of the 
two rock types. This follows from Fourier's law of heat conduction:

where:

q = vertical heat flow (W/m2) 

k = thermal conductivity (W/m°K) 

0 = temperature (°K) 

z = vertical distance (m)

The vertical thermal gradient dS/dz, is continuous because temperature, G, is contin­ 
uous at the boundary. Thus d&\/dz = d&i/dz, and therefore, 91/92 = &1/&2- The 
maximum contrast in vertical heat flow is the ratio of the thermal conductivities.

If the steep contact (scarp) is buried under a uniform surface cover, the heat flow 
at the surface will no longer be discontinuous over the contact. Similarly, if heat flow is 
measured in a uniformly conducting region below the contact, the perturbation is less 
intense and more diffuse with depth.

A previous analysis of heat flow variation caused by effects of contrasting thermal 
conductivity concentrated on the surface variation caused by a series of valleys with 
semi-elliptic cross section (Lachenbruch and Marshall, 1966). The analytic solution 
for the semi-elliptic case was supplemented by finite difference models for basins with 
rectangular cross section. This report extends the analysis by computing the heat flow 
at depth. Current acquisition of down-hole temperature measurements as a part of deep 
scientific drilling (DOSECC Investigators and Staff, 1987) has prompted this work.

The heat flows presented in figures 2-5 were calculated numerically using a 2- 
dimensional finite element program (VFINI2 by T. C. Lee, U. C. Riverside).



The models

Vertical heat flow curves are calculated at a series of depths through two classes of 
model: graben and step. Both model classes have zones of lower thermal conductivity 
with rectangular cross section. The graben has a ratio of half-width to height of 4, the 
step (approximated by a wide graben) has a ratio of 50. For each of these two classes, 
calculations were made for 3 different thermal conductivity contrasts (see table 1 and 
figures 2-4). A fourth set (figure 5) shows the heat flow variation for a graben and 
step that are buried under a low conductivity surface cover to a depth of 1/2 the scarp 
height.

The five parameters that describe the model geometry are illustrated in figure 1. 
The parameters are:

a = Depth of burial of the top of the scarp. 

6 = Height of the graben-bounding scarp. 

c   Half-width of the graben. 

X = Total width of the finite element model. 

Z = Total height of the finite element model.

In table 1 these parameters are normalized by the step height, 6. The final parameter 
that characterizes the model is the normalized contrast in thermal conductivity:

where k\ is the basement thermal conductivity and k^ is the (lower) thermal conductivity 
of the graben fill.

Table 1: Model parameters (see figure 1 for a diagram of the model geometry).
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step
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buried graben 

buried step

a/6
0

0

0

0.5

c/b
4
50
4
50
4 
50
4
50

X/b
50 
100
50 
100
50 
100
50 
100

Z/b
20

20

20

20.5

A*
0.2

0.4

0.8

0.4



The finite element method

The differential equation of steady-state conduction of heat in an isotropic solid is given 
by Laplace's equation (Carslaw and Jaeger, 1959, p. 9, eq. 6):

or, in two dimensions, for two media of contrasting conductivity:

c^ei afei
dx* + dz* 

in medium one, and a2e "*"

in medium two, where 6 is temperature.
For the solution obtained here, the following boundary conditions are assumed:

1. Uniform, constant temperature at the Earth's surface.

2. Constant heat flux across the bottom surface of the model (at depth Z).

3. The horizontal temperature gradient is required to be zero at the sides of the 
model. This condition creates a "mirror" image of the model geometry at each 
side.

4. Continuity of normal flux (kid&i/dn = kzd&i/dn) and temperature across the 
boundary between medium one and medium two.

In the finite element method, the physical continuum is approximated by discrete 
elements (see Desai and Abel, 1972, for a complete treatment of the method). For 
the analysis in this report, the elements are rectangular, each with four corner nodes. 
The rows and columns of the element matrix have uneven spacing. Row elements are 
smaller near the surface and column elements are smaller near the scarp, to give greater 
accuracy where the heat flow varies the most. Figure 6 illustrates the node spacing for 
the graben and step models.

The solution to the steady-state heat flow problem is approximated by treating the 
heat balance at each element separately. The same conservation of energy principles that 
are the basis for Laplace's equation are instead interpreted for each element in terms 
of the temperatures at the adjacent nodes. A system of simultaneous linear equations 
is constructed from these node equations and constrained by the boundary conditions. 
This set of equations is solved for the temperature at each node. Vertical heat flow is 
then calculated by multiplying the vertical temperature gradient (approximated by the 
difference in temperature between two nodes adjacent vertically) by the local thermal 
conductivity.



Results

Figures 2-5 contain the results of this study. Each plot consists of a series of curves, 
each depicting normalized vertical heat flow as a function of distance tram the graben- 
bounding scarp. Heat flow is normalized to the constant flow into the bottom of the 
model (boundary condition 2). The curves are labeled with their depths. All spatial 
dimensions are normalized to the scarp height, 6.

Figure 2 contains the heat flow curves for a graben and step model with a small ther­ 
mal conductivity contrast (ki/ki   1.25, or A& = 0.2). This could apply to the case of 
granite against a low-porosity sandstone, for example. The maximum perturbation is 
about 10% of the regional heat flow. The graben and step cases are not significantly dif­ 
ferent near the scarp. Within 2 scarp heights horizontally, or one scarp height vertically, 
the refraction effect drops below 5% of the background.

Figure 3 contains the heat flow curves for a graben and step model with a moderate 
contrast in thermal conductivity (ki/ki = 1.67, or Afc = 0.4). This could apply to the 
case of granite against high-porosity sandstone, for example. The maximum perturba­ 
tion is about 25% of the regional heat flow. The graben and step cases do not differ 
significantly over the high conductivity (right) side of the model. Within 3 scarp heights 
horizontally or 1.5 vertically, the effect diminishes to below 5%, except in the center of 
the graben where the perturbation exceeds 5% to a depth of 4 scarp heights.

Figure 4 contains the heat flow curves for a graben and step model that juxtapose 
media with a large conductivity difference (ki/kt = 5, or A A: = 0.8). This case could 
apply to granite against alluvium or to ice against snow, for example. Because the 
temperature gradients arising from the step case are greater than those for the graben 
case, the heat flow contrast across the step is larger. This is the case for the previously 
discussed models as well, although the effect is not as pronounced at the lower con­ 
ductivity contrasts. Heat flow varies from less than 40% (the minimum for the graben 
model) to more than 200% (the maximum for the step model) of the regional value. 
The perturbation effect is still 10% at a distance of 5 scarp heights from the graben 
horizontally, or to a distance of 10 scarp heights from the step case. Within the center 
of the graben, the perturbation is still -20% to a depth of 4 scarp heights.

Figure 5 contains the heat flow curves for a buried graben and step of moderate 
conductivity contrast (ki/ki   1.67 or Afc = 0.4). The magnitude of the effect is the 
same as for the models depicted in figure 3, the matching unburied case. The surface heat 
flow (curve 0) is continuous, the discontinuity showing up from 0.5 to 1.5 scarp heights, 
the depth position of the scarp in the model. Since these calculation depths between 
the top and bottom of the scarp (0.5,1, and 1.5) are farther from the isothermal surface 
boundary condition than their companion depths (0, 0.5, and 1) from the unburied case 
(figure 3), the heat flow perturbation falls off somewhat more quickly with horizontal 
distance near the scarp for this model as compared to the unburied model.

In conclusion, the heat flow perturbations caused by refraction at a steep conduc­ 
tivity contact may be a significant fraction of the true regional heat flow. Care must be 
taken in the extrapolation of surface heat flow measurements to depth. Consideration 
must be given to the local geology since the models in this report show that a low con­ 
ductivity basin of great depth may effect the surface heat flow to considerable distance. 
The effects noted in this report should be easy to detect if heat flows are obtained in a 
network of enough horizontal density.
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Figure 1: Geometry of the thermal conductivity model. All distances are normalized to 
the scarp height, 6.
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Figure 2: The variation of vertical heat flow with depth over two models juxtaposing 
material of small difference in thermal conductivity at a steep surface contact. Each heat 
flow curve is labeled with its calculation depth, normalized to scarp height. The lower 
blocks of the figure depict the model geometry. Small arrows mark the depths where 
heat flow is calculated. The stippled region has low thermal conductivity compared 
with the rest of the model. All distances are normalized to a unit scarp height.
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Figure 3: The variation of vertical heat fLow with depth over two models juxtaposing 
material of moderate difference in thermal conductivity at a steep surface contact. Each 
heat fLow curve is labeled with its calculation depth, normalized to scarp height. The 
lower blocks of the figure depict the model geometry. Small arrows mark the depths 
where heat flow is calculated. The stippled region has low thermal conductivity com­ 
pared with the rest of the model. All distances are normalized to a unit scarp height.
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Figure 4: The variation of vertical heat flow with depth over two models juxtaposing 
material of large difference in thermal conductivity at a steep surface contact. Each heat 
flow curve is labeled with its calculation depth, normalized to scarp height. The lower 
blocks of the figure depict the model geometry. Small arrows mark the depths where 
heat flow is calculated. The stippled region has low thermal conductivity compared 
with the rest of the model. All distances are normalized to a unit scarp height.
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Figure 5: The variation of vertical heat flow with depth over two models juxtaposing 
material of moderate difference in thermal conductivity at a steep buried contact. Each 
heat flow curve is labeled with its calculation depth, normalized to scarp height. The 
lower blocks of the figure depict the model geometry. Small arrows mark the depths 
where heat flow is calculated. The stippled region has low thermal conductivity com­ 
pared with the rest of the model. All distances are normalized to a unit scarp height.
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Figure 6: The node geometry of the finite element models. A depicts the entire graben 
model. B depicts half of the symmetric step model. The nodes are closely spaced in the 
regions of the model where heat flow varies the most.
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